The Reflection Coefficient

Transformation

The load at the end of some length of a transmission line (with characteristic impedance Z_{0}) can be specified in terms of its impedance Z_{L} or its reflection coefficient Γ_{L}.

Note both values are complex, and either one completely specifies the load-if you know one, you know the other!

$$
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \text { and } \quad Z_{L}=Z_{0}\left(\frac{1+\Gamma_{L}}{1-\Gamma_{L}}\right)
$$

Recall that we determined how a length of transmission line transformed the load impedance into an input impedance of a (generally) different value:

where:

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right) \\
& =Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{L} \tan \beta \ell}\right)
\end{aligned}
$$

Q: Say we know the load in terms of its reflection coefficient. How can we express the input impedance in terms its reflection coefficient (call this $\Gamma_{\text {in }}$)?

A: Well, we could execute these three steps:

1. Convert Γ_{L} to Z_{L} :

$$
Z_{L}=Z_{0}\left(\frac{1+\Gamma_{L}}{1-\Gamma_{L}}\right)
$$

2. Transform Z_{L} down the line to $Z_{\text {in }}$:

$$
Z_{\text {in }}=Z_{0}\left(\frac{Z_{L} \cos \beta \ell+j Z_{0} \sin \beta \ell}{Z_{0} \cos \beta \ell+j Z_{L} \sin \beta \ell}\right)
$$

3. Convert $Z_{\text {in }}$ to $\Gamma_{\text {in }}$:

$$
\Gamma_{i n}=\frac{Z_{i n}-Z_{0}}{Z_{i n}+Z_{0}}
$$

Q: Yikes! This is a ton of complex arithmetic-isn't there an easier way?

A: Actually, there is!
Recall in an earlier handout that the input impedance of a transmission line length ℓ, terminated with a load Γ_{L}, is:

$$
Z_{\text {in }}=\frac{V(z=-\ell)}{I(z=-\ell)}=Z_{0}\left(\frac{e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}}{e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}}\right)
$$

Note this directly relates Γ_{L} to $Z_{\text {in }}$ (steps 1 and 2 combined!).
If we directly insert this equation into:

$$
\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}
$$

we get an equation directly relating Γ_{L} to $\Gamma_{\text {in }}$:

$$
\begin{aligned}
\Gamma_{i n} & =\frac{Z_{0}}{Z_{0}} \frac{\left(e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right)-\left(e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right)}{\left(e^{+j \beta \ell}+\Gamma_{L} e^{-j \beta \ell}\right)+\left(e^{+j \beta \ell}-\Gamma_{L} e^{-j \beta \ell}\right)} \\
& =\frac{2 \Gamma_{L} e^{-j \beta \ell}}{2 e^{+j \beta \ell}} \\
& =\Gamma_{L} e^{-j \beta \ell} e^{-j \beta \ell} \\
& =\Gamma_{L} e^{-j 2 \beta \ell}
\end{aligned}
$$

Q: Hey! This result looks familiar. Haven't we seen something like this before?

A: Absolutely! Recall that we found that the reflection coefficient function $\Gamma(z)$ can be expressed as:

$$
\Gamma(z)=\Gamma_{0} e^{j 2 \beta z}
$$

Evaluating this function at the beginning of the line (i.e., at $\left.z=z_{L}-\ell\right)$:

$$
\begin{aligned}
\Gamma\left(z=z_{L}-\ell\right) & =\Gamma_{0} e^{j 2 \beta\left(z_{L}-\ell\right)} \\
& =\Gamma_{0} e^{j 2 \beta z_{L}} e^{-j 2 \beta \ell}
\end{aligned}
$$

But, we recognize that:

$$
\Gamma_{0} e^{j 2 \beta z_{L}}=\Gamma\left(z=z_{L}\right)=\Gamma_{L}
$$

And so:

$$
\begin{aligned}
\Gamma\left(z=z_{L}-\ell\right) & =\Gamma_{0} e^{j 2 \beta z_{L}} e^{-j 2 \beta \ell} \\
& =\Gamma_{L} e^{-j 2 \beta \ell}
\end{aligned}
$$

Thus, we find that $\Gamma_{i n}$ is simply the value of function $\Gamma(z)$ evaluated at the line input of $z=z_{L}-\ell$!

$$
\Gamma_{i n}=\Gamma\left(z=z_{L}-\ell\right)=\Gamma_{L} e^{-j 2 \beta \ell}
$$

Makes sense! After all, the input impedance is likewise simply the line impedance evaluated at the line input of $z=z_{L}-\ell$:

$$
Z_{\text {in }}=Z\left(z=z_{L}-\ell\right)
$$

It is apparent that from the above expression that the reflection coefficient at the input is simply related to Γ_{L} by a phase shift of $2 \beta \ell$.

In other words, the magnitude of $\Gamma_{i n}$ is the same as the magnitude of Γ_{ζ} !

$$
\begin{aligned}
\left|\Gamma_{i n}\right| & =\left|\Gamma_{L}\right|\left|e^{j\left(\theta_{\Gamma}-2 \beta \ell\right)}\right| \\
& =\left|\Gamma_{L}\right|(1) \\
& =\left|\Gamma_{L}\right|
\end{aligned}
$$

If we think about this, it makes perfect sense!

Recall that the power absorbed by the load $\Gamma_{\text {in }}$ would be:

$$
P_{a b s}^{i n}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{i n}\right|^{2}\right)
$$

while that absorbed by the load Γ_{L} is:

$$
P_{a b s}^{L}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right)
$$

Recall, however, that a lossless transmission line can absorb no power! By adding a length of transmission line to load Γ_{L}, we have added only reactance. Therefore, the power absorbed by load $\Gamma_{\text {in }}$ is equal to the power absorbed by Γ_{L} :

$$
\begin{aligned}
P_{a b s}^{i n} & =P_{a b s}^{L} \\
\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{i n}\right|^{2}\right) & =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
1-\left|\Gamma_{i n}\right|^{2} & =1-\left|\Gamma_{L}\right|^{2}
\end{aligned}
$$

Thus, we can conclude from conservation of energy that:

$$
\left|\Gamma_{i n}\right|=\left|\Gamma_{L}\right|
$$

Which of course is exactly the result we just found!
Finally, the phase shift associated with transforming the load Γ_{L} down a transmission line can be attributed to the phase shift associated with the wave propagating a length ℓ down the line, reflecting from load Γ_{L}, and then propagating a length ℓ back up the line:

To emphasize this wave interpretation, we recall that by definition, we can write $\Gamma_{\text {in }}$ as:

$$
\Gamma_{\text {in }}=\Gamma\left(\boldsymbol{z}=\boldsymbol{z}_{L}-\ell\right)=\frac{\boldsymbol{V}^{-}\left(\boldsymbol{z}=\boldsymbol{z}_{L}-\ell\right)}{\boldsymbol{V}^{+}\left(\boldsymbol{z = \boldsymbol { z } _ { L } - \ell)}\right.}
$$

Therefore:

$$
\begin{aligned}
V^{-}\left(\boldsymbol{z}=\boldsymbol{z}_{L}-\ell\right) & =\Gamma_{i n} V^{+}\left(\boldsymbol{z}=\boldsymbol{z}_{L}-\ell\right) \\
& =e^{-j \beta \ell} \Gamma_{L} e^{-j \beta \ell} V^{+}\left(z=z_{L}-\ell\right)
\end{aligned}
$$

